Option pricing and hedging for optimized Lévy driven stochastic volatility models
نویسندگان
چکیده
منابع مشابه
A Note on Hedging in ARCH and Stochastic Volatility Option Pricing Models
Ce document est publié dans l'intention de rendre accessibles les résultats préliminaires de la recherche effectuée au CIRANO, afin de susciter des échanges et des suggestions. Les idées et les opinions émises sont sous l'unique responsabilité des auteurs, et ne représentent pas nécessairement les positions du CIRANO ou de ses partenaires. This paper presents preliminary research carried out at...
متن کاملIndifference pricing and hedging in stochastic volatility models
We apply the concepts of utility based pricing and hedging of derivatives in stochastic volatility markets and introduce a new class of “reciprocal affine” models for which the indifference price and optimal hedge portfolio for pure volatility claims are efficiently computable. We obtain a general formula for the market price of volatility risk in these models and calculate it explicitly for th...
متن کاملPricing and Hedging in Stochastic Volatility Regime Switching Models
We consider general regime switching stochastic volatility models where both the asset and the volatility dynamics depend on the values of a Markov jump process. Due to the stochastic volatility and the Markov regime switching, this financial market is thus incomplete and perfect pricing and hedging of options are not possible. Thus, we are interested in finding formulae to solve the problem of...
متن کاملPricing and Hedging Options under Stochastic Volatility
In this essay, I mainly discuss how to price and hedge options in stochastic volatility (SV) models. The market is incomplete in the SV model, whereas it is complete in the Black-Scholes model. Thus the option pricing and hedging methods are a little different for the SV model and for the Black-Scholes model. The no-arbitrage argument and the risk-neutral valuation method are two general method...
متن کاملOption Pricing for Stochastic Volatility Models: Vol-of-Vol Expansion
In this article, we propose an analytical approximation for the pricing of European options for some lognormal stochastic volatility models. This approximation is a second-order Taylor series expansion of the Fourier transform with respect to the "volatility of volatility". We give, using these formulas, a new method of variance reduction for the Monte-Carlo simulation of the trajectories of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos, Solitons & Fractals
سال: 2016
ISSN: 0960-0779
DOI: 10.1016/j.chaos.2016.05.012